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Linear and nonlinear counter-traveling waves in a fluid-filled annular cylinder with realistic no-slip boundary
conditions uniformly heated from below and rotating about a vertical axis are investigated. When the gap of the
annular cylinder is moderate, there exist two three-dimensional traveling waves driven by convective insta-
bilities: a retrograde mode localized near the outer sidewall and a prograde mode adjacent to the inner sidewall
with a different wave number, frequency and critical Rayleigh number. It is found that the retrogradely
propagating mode is always more unstable and is marked by a larger azimuthal wave number. When the
Rayleigh number is sufficiently large, both the counter-traveling modes can be excited and nonlinearly inter-
acting, leading to an unusual nonlinear phenomenon in rotating Rayleigh-Bénard convection.
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I. INTRODUCTION

Rayleigh-Bénard convection in rotating cylindrical sys-
tems heated from below and rotating about a vertical axis has
been long studied as a paradigm for understanding the pat-
tern formation effected by the Coriolis force and the general
dynamics of rotating fluids �e.g., �1��. The problem is also of
geophysical and planetary physical interest, with an applica-
tion to polar regions in the tangent cylinder of the Earth’s
and planetary core �e.g., �2��.

There are two geometric parameters in a rotating annular
cylinder �Fig 1�: the aspect ratio ro of outer radius rod to
depth d and the aspect ratio ri of inner radius rid to depth d.
The problem of rotating Rayleigh-Bénard convection in cy-
lindrical systems has been extensively studied in two differ-
ent geometric limits. In the limit ri→0, it is now well known
that the effect of the sidewall destabilizes convection and the
primary bifurcation in the vicinity of the instability threshold
takes the form of a retrogradely traveling wave of constant
amplitude localized near the sidewall of the cylinder �e.g.,
�3–6��. It has been shown that the weakly nonlinear retro-
gradely propagating wave may be described by a single one-
dimensional complex Ginzburg-Landau equation for which
the coefficients can be determined either by experimental
studies �e.g., �7,8�� or by numerical computations �e.g.,
�5,9��. In the limit ri→� and ro→� but with ro−ri=O�1� in
which the effect of the curvature can be neglected, convec-
tion is characterized by two oppositely traveling waves with
exactly the same frequencies, wave numbers and critical
Rayleigh numbers. In this case, the weakly nonlinear prob-
lem may be studied on the basis of two coupled complex
Ginzburg-Landau equations �e.g., �10,9��. For a moderate
gap �ro−ri�=O�Ta−1/6�, where Ta is the Taylor number, the
two oppositely traveling waves can interfere nonlinearly,
leading to various forms of the nonlinear solutions �11�.

The intermediate case ri=O�1� and ro=O�1�, which can
also be realized in experiments, has richer dynamics but is
mathematically much more complicated in the following
way. The curvature effect becomes significant and, conse-
quently, the coupled complex Ginzburg-Landau equations,
which are based on expansion in the small amplitude of con-

vection, are, generally speaking, no longer applicable to the
problem of nonlinear countertraveling waves. This is because
the two oppositely traveling modes are characterized not
only by different frequencies and wave numbers, but also,
more importantly, by different critical Rayleigh numbers. No
linear stability analysis has been carried out for the problem:
it is unclear which mode, the retrogradely propagating wave
near the outer sidewall or the progradely propagating wave
adjacent to the inner sidewall, is convectively more unstable.
We also know little about the physical and mathematical
properties of the nonlinear countertraveling waves beyond
the onset of buoyancy-driven instabilities �12,13�. This Brief
Report reports some preliminary results of both the linear
analysis of convective instabilities in the form of counter-
traveling waves and the corresponding nonlinear solutions in
a rotating annular cylinder with ri=O�1� and ro=O�1� heated
from below and rotating about a vertical axis.

II. MATHEMATICAL FORMULATION

We consider convection in a Boussinesq fluid with con-
stant thermal diffusivity �, thermal expansion coefficient �
and kinematic viscosity � in an annular cylinder of depth d
with inner radius rid and outer radius rod, the geometry of
which is shown in Fig. 1. The vertical coordinate, denoted by
z, is parallel to the rotation axis, with radial coordinate s and
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FIG. 1. Geometry of a rotating annular cylinder of depth d with
cross section defined by �rid��s� �rod�, s being the distance from
the rotation axis.
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azimuthal coordinate �. The whole system rotates uniformly
with constant angular velocity 	k in the presence of vertical
gravity g=−g0k, where k is a vertical unit vector. As in the
classical Rayleigh-Bénard problem, the annular cylinder is
uniformly heated from below to maintain an unstable vertical
temperature gradient, �
0=−�k, where � is a positive con-
stant. The convection problem is governed by the three di-
mensionless equations

�u

�t
+ u · �u + Ta1/2k � u = − �p + R
k + �2u , �1�

Pr� �


�t
+ u · �
� = u · k + �2
 , �2�

� · u = 0, �3�

where

R =
��g0d4

��
, Pr =

�

�
, Ta =

4	2d4

�2 ,


 represents the dimensionless deviation of the temperature
from its conducting state 
0, p is the total pressure, and u is
the three-dimensional velocity field u= �us ,u� ,uz� in the cy-
lindrical coordinates �s ,� ,z� with corresponding unit vectors

�ŝ ,�̂ , ẑ�. The convection problem is characterized by three
nondimensional parameters, the Rayleigh number R, the
Prandtl number Pr and the Taylor number Ta.

The boundary conditions are assumed to be no-slip and
conducting at the top and bottom

us = u� = uz = 
 = 0 at z = 0, 1, �4�

while the no-slip and insulating sidewalls require that

us = u� = uz =
�


�s
= 0 at s = ri, ro. �5�

We shall first perform the stability analysis of linearized ver-
sions of Eqs. �1�–�3� subject to the boundary conditions �4�
and �5�, which provides helpful guidance not only for under-
standing the phenomenon of countertraveling waves but also
for computing the nonlinear interaction of the waves, and
then solve the fully nonlinear Eqs. �1�–�3� subject to the
boundary conditions �4� and �5� by direct numerical simula-
tions.

III. LINEAR COUNTER-TRAVELING WAVES

It is anticipated that convection in a rapidly rotating an-
nular cylinder is strongly non-axisymmetric �e.g., �3,4��. For
the linear stability analysis, a non-axisymmetric velocity
vector satisfying Eq. �3� in cylindrical geometry can be ex-
pressed in terms of two scalar potentials 
 and � ��14��

u =
1

s

�


��
ŝ + � ��

�z
−

�


�s
��̂ −

1

s

��

��
ẑ . �6�

An important advantage of using �6� is that the two scalar
potentials are decoupled in the velocity boundary condition

on the two no-slip sidewalls, as well as at the top and bottom
bounding surfaces. Making use of the expression �6� and
applying ẑ ·�� and ŝ ·�� onto the linearized version of �1�,
we can derive two independent scalar equations which, to-
gether with the linearized �2�, are solved numerically by us-
ing the Chebyshev-tau method.

In the stability analysis, we wish to distinguish two dif-
ferent linear solutions: the first represents the retrogradely
propagating wave localized near the outer sidewall, which
can be expressed, for example, in the form


out = 
o�s,z,Ro�exp�imo� + i�ot� , �7�

where mo is a positive integer wave number and the Rayleigh
number Ro is chosen such that �o is positive and real. The
second is for the progradely propagating wave adjacent to
the inner sidewall,


in = 
i�s,z,Ri�exp�imi� − i�it� , �8�

where mi is a positive integer wave number and the Rayleigh
number Ri is chosen such that �i is positive and real.

We are mainly interested in sufficiently large Taylor num-
bers, Ta�1, for which the convective motions are in the
form of traveling waves and tend to concentrate in the vicini-
ties of the sidewalls. Without loss of general physics for
rapidly rotating systems, we shall focus on the case
Ta=106 and Pr=7.0 �water at room temperature� with a fixed
ro=2 but taking ri as a parameter. In the limit ri→0, the
linear solution is marked by a retrogradely traveling wave
concentrating at the outer sidewall, with the Rayleigh num-
ber Ro=33 918, azimuthal wave number mo=8, and fre-
quency �o=3.967. As ri increases, for example, to ri=1.25,
both the countertraveling modes become realizable: the ret-
rograde mode concentrating at the outer sidewall is still de-
scribed by the Rayleigh number Ro=33 918 with mo=8 and
�o=3.967, while the progradely traveling mode concentrated
at the inner sidewall is characterized by Ri=35563 with
mi=6 and �i=3.899. The structures of both the counter-
traveling convective modes are depicted in Fig. 2 for
ri=1.25. It is worth noting that, as a result of the wall-
localized nature, the spatial structure and critical parameters

(a) (b)

FIG. 2. Two different linear traveling wave solutions for
ri=1.25 and ro=2.0: �a� contours of temperature 
out at z=1 /2 for
the retrogradely traveling mode with mo=8,Ro=33 918 and
�o=3.967, and �b� contours of 
in at z=1 /2 for the progradely
traveling mode with mi=6,Ri=35 563 and �i=3.899.
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for the retrograde mode remain nearly unchanged for differ-
ent values of ri. Our linear stability analysis suggests that
Ri�Ro and mo�mi for all nonzero ri and for any sufficiently
large Taylor number.

IV. NONLINEAR COUNTER-TRAVELING WAVES

Two features are essential in the understanding of nonlin-
ear countertraveling waves: �i� the effect of the cylindrical
curvature destroys the spatial symmetries between the two
countertraveling modes, and �ii� the typical radial scale for
the wall-localized traveling mode is of O�Ta−1/6� ��6,15,16��,
which is of O�0.1� for Ta=106. This indicates that the two
oppositely traveling waves, obtained for ri=1.25 at Ta=106

with different wave numbers and frequencies, have to inter-
act nonlinearly when R�Ri. We shall hence focus our study
of the nonlinear countertraveling waves on the case
ri=1.25.

We choose to tackle the nonlinear problem via direct
three-dimensional numerical simulations using a finite differ-
ence method. In an attempt to unveil the nature of the bifur-
cation from convective instabilities, we start the simulations
from a Rayleigh number slightly larger than Ro=33918. Fig-
ure 3 shows the typical spatial structure of the nonlinear
waves, representing three different bifurcations at three typi-
cal Rayleigh numbers. The primary bifurcation is, as cor-
rectly predicted by the linear stability analysis, characterized
by a retrogradely traveling wave of constant amplitude local-
ized in the vicinity of the outer sidewall with the dominant
azimuthal wave number m=8 and frequency about �=4.0.

This is illustrated in Fig. 3�a� for the nonlinear retrogradely
traveling wave obtained at R=35 000.

When the Rayleigh number R increases to 36 000, which
is slightly greater than the critical Rayleigh number
Ri=35 563 for the progradely traveling mode, the secondary
bifurcation takes place. As displayed in Fig. 3�b�, both the
prograde and retrograde modes with mi=6 and mo=8 are
excited, which is consistent with the prediction of the linear
stability analysis. This is also consistent with the result of the
general symmetry analysis for convection in rotating annulus
�17�. When the Rayleigh number R increases to 40 000,
which is at 12% above the onset of the least excited wave,
the third bifurcation takes place, characterized by the shift of
azimuthal wave numbers. The third bifurcation, shown in
Fig. 3�c�, is marked by the progradely traveling wave in the
vicinity of the inner sidewall with a larger wave number
m=7, a result of the stronger nonlinear effect. At the same
time, the dominant wave number of the retrogradely travel-
ing wave is also shifted to m=9. Dependent upon the relative
phases of the two waves at any instant, two oppositely trav-
eling waves are slipping against each other and nonlinearly
interacting, resulting in slight variations of their amplitude.
Further bifurcations are generally characterized by a gradual
increase of the dominant wave number of the retrogradely

(a) (b)

(c) (d)

FIG. 3. Snapshots of contours of temperature 
 at z=1 /2 for
nonlinear convection at three different Rayleigh numbers with ri

=1.25 and ro=2.0: �a� R=35 000, �b� R=36 000, �c� R=40 000, and
�d� R=50 000.

(a)

(b) (c)

(d) (e)

FIG. 4. �a� Kinetic energies of nonlinear countertraveling waves
at R=70 000 for ri=1.25 and ro=2.0. �b�–�e� Contours of tempera-
ture 
 at z=1 /2 for four different instants.
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traveling wave, in connection with the mechanism of the
Eckhaus-type instability �18�. However, the spatial scale of
the progradely traveling wave remains largely unchanged. At
R=50 000, for example, the dominant wave number of the
retrogradely traveling wave increases to m=10, which is de-
picted in Fig. 3�d�.

Kinetic energies of the nonlinear countertraveling waves
obtained for R=7.0�104, along with their spatial structure at
four different instants, are displayed in Fig. 4. The dominant
wave number for the retrogradely traveling wave increases to
m=15 while the wave number of the progradely traveling
wave still remains at m=7. The two countertraveling waves
having different wave numbers and frequencies interfere
nonlinearly, creating a unique nonlinear dynamics in rotating
Rayleigh-Bénard convection. It is worth mentioning that the
onset of rotating Rayleigh-Bénard convection in an infinitely
extended layer occurs at Rc=7.11�104 for Ta=106 and
Pr=7.0. It is remarkable that nonlinear rotating convection in
the form of countertraveling waves becomes temporally and
spatially irregular even before the onset of the classical
Rayleigh-Bénard instabilities occurs.

V. SUMMARY AND REMARKS

We have investigated both linear and nonlinear counter-
traveling waves occurring in a fluid-filled annular cylinder,
with realistic no-slip boundary conditions, uniformly heated
from below, and rotating about a vertical axis. When the gap
of the annular cylinder is moderate, we show that nonlinear
solutions are characterized by a retrogradely propagating
wave near the outer sidewall and a progradely propagating

wave adjacent to the inner sidewall. The two counter-
traveling modes have different wave numbers, frequencies,
and critical Rayleigh numbers. When the Rayleigh number R
is sufficiently large, the two countertraveling waves, depen-
dent upon their relative phases at any instant, interact non-
linearly, leading to an unusual nonlinear phenomenon in ro-
tating Rayleigh-Bénard convection. It should be noted that
this nonlinear phenomenon is quite different from that in a
radially heated annulus �e.g., �19,20��.

It is important to recognize the fundamental difference
between the current problem and the annular channel limit
ri→� and ro→�. In the latter case, two oppositely traveling
waves have the exactly same frequencies, wave numbers,
and critical Rayleigh numbers �e.g., �5,10,9��; they may in-
teract nonlinearly to stick together to form stationary convec-
tion �11�. When two countertraveling waves are marked by
different wave numbers, frequencies and critical Rayleigh
numbers, as in the present study, a stationary convection rep-
resenting two stuck oppositely traveling waves is no longer
possible. Furthermore, it is unlikely that the nonlinear coun-
tertraveling waves discussed in this study can be properly
described by two coupled complex Ginzburg-Landau equa-
tions.
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